首页> 外文OA文献 >Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator
【2h】

Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator

机译:时变非线性可积研究中的代数方法   系统:奇异振荡器的情况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The classical and the quantal problem of a particle interacting inone-dimension with an external time-dependent quadratic potential and aconstant inverse square potential is studied from the Lie-algebraic point ofview. The integrability of this system is established by evaluating the exactinvariant closely related to the Lewis and Riesenfeld invariant for thetime-dependent harmonic oscillator. We study extensively the special andinteresting case of a kicked quadratic potential from which we derive a newintegrable, nonlinear, area preserving, two-dimensional map which may, forinstance, be used in numerical algorithms that integrate theCalogero-Sutherland-Moser Hamiltonian. The dynamics, both classical andquantal, is studied via the time-evolution operator which we evaluate using arecent method of integrating the quantum Liouville-Bloch equations \cite{rau}.The results show the exact one-to-one correspondence between the classical andthe quantal dynamics. Our analysis also sheds light on the connection betweenproperties of the SU(1,1) algebra and that of simple dynamical systems.
机译:从李代数的角度研究了粒子与外部时间相关的二次势和恒定反平方势相互作用的单维相互作用的经典和量子问题。通过评估与时间相关的谐振子与Lewis和Riesenfeld不变量密切相关的精确不变量来建立该系统的可积性。我们广泛研究了被踢的二次势的特殊有趣的情况,从中我们得出了一个新的可积分的,非线性的,面积守恒的二维映射,该映射可用于例如整合Calogero-Sutherland-Moser Hamiltonian的数值算法。我们通过时间演化算子研究了经典动力学和量子动力学,我们使用了积分量子Liouville-Bloch方程\ cite {rau}的最新方法进行了评估,结果显示了经典和精确的一对一对应关系。量子动力学。我们的分析还阐明了SU(1,1)代数的性质与简单动力系统的性质之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号